Performance Modeling for Software Integration

Kang G. Shin and Shige Wang
Real-Time Computing Laboratory
Department of Electrical Engineering and Computer Science
The University of Michigan
Ann Arbor, Ml 48109-2122
email{wangsg,kgshih@eecs.umich.edu

Abstract — Software construction with reusable compotions, and proved beneficial for fast and low-cost software
nents and legacy code has proven useful for fast and low-cégvelopment. However, recent practices of using these tech-
software development in many real world applications. Hovirologies for performance-constrained applications, such as
ever, since this methodology is often applied to domains witfetworked multimedia and embedded controls, have shown
stringent performance and resource constraints such as #mat only limited benefits can be gained from using these
bedded systems, its ignorance of non-functional constrait@shnologies alone. One of their main difficulties is that
makes it very difficult and expensive to meet the constrairiiéese applications have to interact with the physical world,
at a post-integration stage. and are, therefore, subject to stringent physical performance
In this paper, we propose a new methodology for (i) inconstraints. These constraints are traditionally hidden, or
tegrating a performance model with functional models dupbstracted away, and hence left unaddressed by the above-
ing the design phase, and (ii) using the performance mod@entioned SW development technologies. Models, design
parameters along with functional components throughout &¥ethods, and architectures used in current practices are
SW de\/e|0pment phases that usua”y re|y on different too&ﬁfared towards functionality with little attention pald to the
The performance model is constructed by examining tﬁ@n'functional ConStraintS; that iS, they focus Only on func-
performance requirements and characteristics of functiofi@nal partitioning, design, implementation and integration.
components and their interaction patterns, and by assocf#ch a design and integration views performance issues as
ing them with functional components and patterns as pdfplementationissues, and addresses them by simulationin a
formance parameters. The advantage of such modeling ligi¢r phase of the development, which may be too late and/or
in that the performance model is easily integratable wifl0 costly to change the design if the implementation can-
functional components and can be reused just like reusapft meet the performance requirements. When a component
functional components. The proposed performance modi§i-reused in software integration, only its functionality and
ing, therefore, solves the cross-cutting issues of performan#ie corresponding interfaces are reused. Such reuse will not
aware functional design, and makes the consistent perfBg feasible if the performance constraints change, which are
mance information available across the different phases @mmon for embedded real-time systems. On the other hand,
software lifecycle. The main technical issues for such pegperformance analysis is carried out in an ad hoc way, and is
formance modeling include how to partition the performandtrmally viewed as an art, not an engineering process [4].
model along the function models and software architecturhus, the results obtained vary dramatically from engineer
how to determine and systematically measure the perfép-engineer, depending on the issues he is interested in, and
mance parameters of software components in each partitgthodologies used to validate the performance.
for reuse in constructing different performance models, and All of the above issues require a performance model that
representing the performance parameters for use across difn capture non-functional aspects and can be used along
ferent tools, and building a performance model for desigmith functional components throughout the entire software
time analysis and runtime QoS management. development cycle from the system requirements specifica-
tion to system design, implementation, testing, even runtime
analysis and reconfiguration. To this end, we propose an ap-
1 Introduction proach to modeling system performance of each individual
reusable component as a set of performance parameters at
New software engineering technologies such as componegech level associated with the corresponding functionalities.
based software integration [6] and pattern-oriented softwarbe performance parameters are designed to be measurable
architecture [3] have been used in many real world applicand stable in a given environment, and are viewed as static

properties of functional components. The performance model
of SW integration can then be constructed using the per-
formance parameters of constituent functional components,
component execution environments and their interaction pat-
terns in the integration. Modeling performance this way en-
ables a designer to reuse the performance model with func-
tional components/subsystems (by choosing different imple-
mentations and interaction patterns for the same functions).
Such performance parameters can also be used across differ-
ent tools in a tool chain despite the fact that the different tools
may represent different component functions and interfaces.

The rest of the paper is organized as follows. Section 2°
describes the performance model and issues related to its
construction, including determination of the performance pa-
rameters for each component, measurement of the parame-
ters under some representative environment, and their spec-
ification with the components for reuse and analysis. Sec-
tion 3 discusses software integration using the proposed per-
formance model to meet the application performance require-
ments. Section 4 describes our previous experiences on
performance-constrained software development, and identi-
fies the remaining research issues to complete performance
modeling. The paper concludes with Section 5.

2 Modeling Performance for Software
Integration

Performance requirements are usually expressed as some
functional constraints and properties that will ensure the dy-
namic behaviors of functions to be correct and timely. So,
we can treat the performance model of integrated software as
a combination of the performance of individual components
used in the integration. We describe the performance of each
component with parameters. To reuse the performance infor-
mation and build the performance model of integrated soft-
ware with each component’s performance, the performance
parameters should have the following properties.

e Performance information should be included in the com-
ponent model as attributes associated with its function-

it is difficult to use only one tool throughout all devel-
opment phases. Multiple tools with different underlying
assumptions are usually used to design and analyze dif-
ferent aspects of the system. Reusable components in
different tools may be represented in different formats,
and hence, each needs a different representation of per-
formance information. For example, the timing infor-
mation in a tool for design may be represented as an
end-to-end deadline, while in a tool for implementation

it may be represented as a rate of execution.

The performance model should include each compo-
nent's performance characteristics (such as its worst-
case execution time and memory usage). Such perfor-
mance characteristics can usually be measured on a plat-
form, independently of its interactions with other soft-
ware components. The ability of independent/isolated
measurement ensures the performance of a component
is self-contained and can be reused in different software
integrations. The deployment-related parameters of a
performance model can be derived through analysis us-
ing the component performance characteristics together
with their interactions. For example, the blocking time
of a component’s execution can be derived from the ex-
ecution time of a component itself and the sum of exe-
cution times of other components it has to wait for.

The performance model should also capture perfor-
mance requirements. The performance requirements of
a component impose constraints (such as deadlines) on
the component, which has to be met for the system to
behave correctly. Such performance requirements usu-
ally depend on the component’s context, and varies from
configuration to configuration. It is also common that
requirements change dynamically during runtime when
the execution mode changes. So, unlike the perfor-
mance characteristics which are fixed for a given plat-
form, component performance requirements should be
externally adjustable to achieve different levels of per-
formance.

alities. Current designs are basically a process of parti- To build a performance model with all of the ahave proper-

tioning end-to-end functions into small pieces, and me{ S’t_We mOdil cor;]pqngn:]s t(.) have (rju_)ttonfly funcgotnall spec-
them to the functions supported by some componen cations such as their behaviors and interfaces, but also per-

Existing reusable software components are all designé’(ﬁmance specifications, as shown in F|gu.re 1. Note th"’.u
and implemented based on their functionality, which jgomponents can be any reusable elements in software design

a primary factor for component selection and reuse. s%nd implementation, including application models and code,

performance information has to be used along with tho étterns of component interactions and communications, and
components that will meet the intended functional ré— e underlying infrastructure services (middleware, OS, and

quirements. network protocols).

In such a structure, each component can perform several
Performance information should be expressed in sorfigctions by accessing the corresponding function interfaces
abstract and general form so that it may be used for dife.g., method calls and event triggers). Each function has a
ferent tools in a tool chain throughout the different deset of performance parameters. Some of the parameters are
velopment phases. As software gets more complicatestatic attributes representing the performance characteristics,

{gpg};%g I same layer of hierarchyThe parameters should be measured

I in a systematic manner with representative codes to ensure
that the results are reproducible and comparable. Results of
these measurements should be represented in a way that the
Function/ Function/ Function/ context will be used as a parameter when the performance
Behavior Behavior Behavior attributes are derived.

Performance
Parameters

Performance
Parameters

...... Performance

Parameters Hierarchical performance model construction. Compo-

nents are usually integrated hierarchically to reduce com-
plexity. Consequentally, the performance model of integrated
software should also be constructed hierarchically using the
performance parameters of each component. The perfor-
mance parameters of a higher-level component can be derived
I I from a combination of performance parameters of all con-
perfornience stituent lower-level components, as shown in Figure 2. Exist-
ing research [1, 2] has demonstrated that such a hierarchical
Figure 1: The reusable component structure with perfoRrodel can be constructed and will be beneficial, although the
mance parameters. proposed models are either too low-level (such as at instruc-
tion set level) to be useful in practice, or constructed in an ad
hoc way for a target application.
while others are the requirements representing performance

Attributes

[Requirements

constraints. Both can be changed by accessing the corre- Application
sponding performance interfaces. Application T E::ES:;::;T:

An assumption for software integration using this model is Composiion, behaviors and senvices Message delay
the existence of implementation polymorphism, meaning that
each functional component should have multiple implemen- o System Software
tations with different levels of performance. To reuse perfor- o semSofware] Tierovertead andjer

. . . . Timer, scheduler and communication Scheduling overhead and latency

mance parameters in multiple software integrations, the fol- Commuricaton delys

lowing issues need to be addressed.

Hardware Architecture Hardware Architecture

Determine performance parameters. Which perfor_ CPU and memory architecture \\‘\ Clock rate, CPI and pipeline stages|
. Bus speed and width

mance parameters can be reused and customized, should be ey and cach speed and size

determined when a component is designed. Parameters for

performance attributes usually depend on the nature of fungyyre 2: Deriving performance parameters from lower-level

tions and target analysis. For example, latency is a prop&mponents.

attributes for communication components, while execution

time is more suitable for computation components for timing

analysis. It may also depend on the performance attribugesrformance parameters for formal verification.

of the underlying support. Parameters of performanegnce performance-constrained applications are usually

requirements usually depend on component interactions anfsion/safety-critical applications, formal verification is

higher-level performance requirements. Since both typggsired to ensure their correctness. Modeling the perfor-

of parameters are highly domain-specific, the componafince of components as a set of performance parameters

designer in a particular domain would be able to determifgakes it easy to integrate the performance information with

them based on which products/applications will use thgrmal methods in analysis. The behavioral model of a

component and how it can possibly be used. reusable component can be constructed using a basic model

(e.g., continuous or discrete event) with the performance

Performance parameter measurement. After determin- parameters added to it. The verification and analysis can

ing the parameters essential for constructing the performaﬁ@gn be done based on the performance parameters of each

model for integration, the associated performance attribufenponent. On the other hand, the results proven after

can be measured and reused. The measurements shoul}ﬁeﬁ'é'catlon c?n arl]so be mapt[:;ed_ tolprope;r t_performance
taken in the context where the component can possibly parameters ot each componentior implementation.

U§9d= including @fferent con.f|gurat_|ons of the underlying ser- 14 wypical hierarchy consists of operating system, middieware, and ap-
vices and possible interactions with the components at thigation.

3 Software Construction with Perfor- performance attributes related only to one component, reuse
mance Model of performance requirements may imply use of the same soft-
ware architecture and patterns. With reuse of a partial or

Performance requirements of software are normally given WE0l€ performance model of integrated software, incremen-

the end-to-end performance constraints derived from physid@ O differential performance analysis is possible when only

constraints during the system design. For example, comfia't Of the software is changed.

tation associated with the sensing of an object flying into an Modeling performance with component performance pa-
area, determination of its identity as an enemy missile/fight&Meters also supports performance-aware software integra-
jet, and launching of an anti-missile should be done withi#P" With multiple tools as a tool chain. In current complex
a bounded tim®. In the current describe-and-synthesis deioftware development with multiple tools involved in differ-
velopment process [7], software functions are partitioned &2t developmentphases and used for designing and analyzing
cording to some criteria, and then integrated by choosifffferent system aspects, performance information should be
proper existing components that perform the desired furf ble to rovy from one tool to ano'th_ar without losing interest-
tionality, and then linking them together. Since there is ri§9/useful information. Many existing research results have
performance information associated with components in c20wn that a meta-model is required for such a tool chain in-
rent component design and implementation, the performariggration [5]. The performance parameters can be defined in
evaluation of the integrated software heavily depends on ttR€ meta-model and used for different tools.
ditional ad hoc simulations.

Software construction using the proposed performance .
model in Section 2 along with the describe-and-synthesis pd- EXperiences and Unresolved Issues
cess will enable the performance analysis to start as early as
in design phase, hence eliminating or reducing the develdgedeling the performance for use with software compo-
ment cost due to error detection in simulation at a later stagnts for integration is motivated by our previous experience
One approach to detecting a performance failure before imith manufacturing and embedded system SW design. We
plementation is to use performance-proven integration. have developed a reconfigurable software architecture for the
this approach, after components are selected and integratedien architecture controllers since 1995. Although the re-
satisfy the functional requirements, the performance modllts show that object-oriented modeling and separate be-
can be constructed, and performance analysis is condudtedtior specification provide the end users more flexibility
based on the model to verify the satisfiability of the perfoin controller software design and implementation, meeting
mance constraints. Once the constraints are all satisfialiteg performance constraints was the most difficult and time-
the system can be implemented with selected componem®nsuming issue. More than a half of the development ef-
and the integrated software is guaranteed to be correct in btatis were made on performance verification and tuning in
functionality and performance. Otherwise, changes havermchine tool controller software to ensure timely completion
be made by either re-selecting components with different p@f-all critical system operations, even on a resource-rich plat-
formance numbers or re-organizing components using difféerm. The root cause of this was the lack of performance
ent interaction patterns with different performance figures. information for reusable components; the performance con-

An alternative to software construction using the perfostraints have to be checked in an ad hoc case-by-case way
mance model is performance-directed partitioning and cowfter all functions are implemented. So, an analytic model
ponent selection. Instead of partitioning the system purelyith systematically-measured performance parameters will
based on functionality, the partitioning can be done with lzelp reduce the development time significantly in such soft-
combination of both function and performance consideraare construction. The preliminary results of our ongoing
tions. Once a subsystem is generated, a set of performaneedel-based real-time embedded software integration have
sub-constraints for the subsystem are also generated. Thedicated that a reusable performance model will help accel-
components and implementations can be selected dependirgfe software development. The performance analysis algo-
on whether they will meet the sub-constraints or not. Such &thms and methodologies we have developed and integrated
approach may be suitable for applications with pre-definéato the GME environment, have used some of the perfor-
performance constraints for some subsystems. mance parameters of reusable components to verify the cor-

In both the software construction approaches, perfoiectness of design, and support automatic performance pa-
mance parameters are reused. The performance modelréoneter value assignments. These performance parameters
part thereof) is reused as components/integrations are reus@we also been defined in the meta-model that will be used
or the same application performance requirements are reus#toss tools in an integrated experiment.
Performance attributes are reused along with componentAlthough modeling the performance of components and
functions, while performance requirements are reused whiesusing the model along with the functional components is a
substituting a componentin the same context. Unlike reusegybmising approach to fast and correct software construction,

there remain several issues that warrant further research. dme Conclusions
of them is the need to develop methods for constructing the
performance model for integrated software. The difficultferformance-aware software development is critical for fu-
arises from the complex relationships between the compbte software construction in many application domains,
nents in a real application. Such relationships include &uch as distributed embedded systems and real-time con-
types of interactions of the underlying services and mechiol systems. The software development will be acceler-
anisms, data/information dependencies among the comptgd if the performance of product can be specified and an-
nents at the same level as well as between lower and highbzzed during early phases of development, and the infor-
levels. According to our experience in modeling OS sefation can be passed between different development stages
vices, interactions between components can become arbittgat use different tools. We propose performance modeling
ily complicated due to the inter-dependencies among compiith the parameters associated with functional components
nents. Consequently, the performance of a component nf)d patterns in order to achieve early performance analysis
have cascaded dependencies with multiple other componegf¥l reuse in software integration. The performance model
This too will make it complicated to construct in the perforof integrated software using the proposed approach can be
mance model. Although component interactions usually fagtonstructed hierarchically at different function levels with
low some patterns, the performance of software patternssistematically-measured performance parameters of compo-
neither well-defined nor clear in current research. nents. The model can facilitate both early phase performance
analysis and component selection & integration. Although
our experiences have shown that such a performance model
Another issue is related to using the performance modgbuld accelerate software development without losing soft-
with heterogeneous models with different modeling assumgare quality, further research needs to be done on such is-
tions such as synchronous/asynchronous communicatigoes as performance for different software patterns, informa-
time-driven or event-driven operation, etc. Depending dion transformation among heterogeneous models, and model
the designer’s interest, the software can be modeled usigghstruction with partial performance information.
an object-oriented model such as UML class diagrams, or
a formal behavior model like finite-state machines, or some
continuous function blocks such as block diagrams in maReferences
lab/Simulink. Due to the different characteristics and the un-))))
derlying assumptions of different models, performance pél-] K Bradley. A frgmework for mcorporgtlng real-time analysis
rameters may have different formats to be used for these mod- "Mt System design processénD thesis, Department of Elec-
els. Transformation of performance information from one t“.cal and Computer Engineering, Carnegie Mellon University,
. . . Pittsburgh, Pennsylvania, December 1998.
format to another while maintaining the consistency between
performance parameters is another issue that needs to be sgidA. B. Brown and M. I. Seltzer. Operating system benchmark-
ied. ing in the wake of Imbench: A case study of the performance of
netbsd on the intel x86 architecture.Rroceedings of the 1997
ACM SIGMETRICS Conference on Measurement and Model-
A limitation of our performance model is that it can only ing of Computer Systemsages 214-224, June 1997.
be constructed when all perfo_rmance pg_ram_eters are av :l_ F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
able. The performance analy§|s and v§r|f|ca_tt|on for a mod M. Stal. Pattern-Oriented Software Architecture: A System of
with only pa_Lrt.|aI performance |nf0rmatl|on will _have almost patterns John Wiley & Sons, 1996.
the same difficulty as the case of no information because a
performance model with partial information doesn’t help a#] R. Jain. The Art of Computer Systems Performance Analy-
all in analysis. This implies that some form of implementa- Sis: Techniques for Experimental Design, Measurement, Sim-
tions have to exist for all components before making the per- ulation, and Modeling John Wiley & Sons, 1991.
formance analysis, which is not always the case. Althoughi#j . karsaet al. Model-integrated system development: models,
is much better than ad hoc simulation, performance analysis grchitecture and process. Rroceedings of the 21st Annual
and verification based on a model with partial information is International Computer Software and Application Conference
still desired. (COMPSAC’97)Bethesda, MD, August 1997.

[6] C. Szyperski. Component Software: Beyond Object-Oriented
Some other issues such as developing toolkits for system- Programming Addison-Wesley Publishing Company, 1997.
atic performance megs_urements, represent_lng a per_forma[lﬁeD. D. Gajski, F. Vahid, S. Narayan, and J. Gorgpecification
model for online decision and reconfiguration, and integra-" 4and Design of Embedded SysteReentice Hall, 1994.
tion of performance modeling with the meta-model should
also be studied to capitalize on the performance model.

